Toward Multilingual Neural Machine Translation with Universal Encoder and Decoder
نویسندگان
چکیده
In this paper, we present our first attempts in building a multilingual Neural Machine Translation framework under a unified approach in which the information shared among languages can be helpful in the translation of individual language pairs. We are then able to employ attention-based Neural Machine Translation for many-to-many multilingual translation tasks. Our approach does not require any special treatment on the network architecture and it allows us to learn minimal number of free parameters in a standard way of training. Our approach has shown its effectiveness in an under-resourced translation scenario with considerable improvements up to 2.6 BLEU points. In addition, we point out a novel way to make use of monolingual data with Neural Machine Translation using the same approach with a 3.15BLEU-score gain in IWSLT’16 English→German translation task.
منابع مشابه
Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation
We propose a simple solution to use a single Neural Machine Translation (NMT) model to translate between multiple languages. Our solution requires no changes to the model architecture from a standard NMT system but instead introduces an artificial token at the beginning of the input sentence to specify the required target language. The rest of the model, which includes an encoder, decoder and a...
متن کاملNeural Sequence-to-sequence Learning of Internal Word Structure
Learning internal word structure has recently been recognized as an important step in various multilingual processing tasks and in theoretical language comparison. In this paper, we present a neural encoder-decoder model for learning canonical morphological segmentation. Our model combines character-level sequence-to-sequence transformation with a language model over canonical segments. We obta...
متن کاملLiterature Survey: Study of Neural Machine Translation
We build Neural Machine Translation (NMT) systems for EnglishHindi,Bengali-Hindi and Gujarati-Hindi with two different units of translation i.e. word and subword and present a comparative study of subword NMT and word level NMT systems, along with strong results and case studies. We train attention-based encoder-decoder model for word level and use Byte Pair Encoding (BPE) in subword NMT for wo...
متن کاملMultilingual Neural Machine Translation for Low Resource Languages
Neural Machine Translation (NMT) has been shown to be more effective in translation tasks compared to the Phrase-Based Statistical Machine Translation (PBMT). However, NMT systems are limited in translating low-resource languages (LRL), due to the fact that neural methods require a large amount of parallel data to learn effective mappings between languages. In this work we show how so-called mu...
متن کاملIncorporating Global Visual Features into Attention-based Neural Machine Translation
We introduce multi-modal, attentionbased Neural Machine Translation (NMT) models which incorporate visual features into different parts of both the encoder and the decoder. Global image features are extracted using a pre-trained convolutional neural network and are incorporated (i) as words in the source sentence, (ii) to initialise the encoder hidden state, and (iii) as additional data to init...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1611.04798 شماره
صفحات -
تاریخ انتشار 2016